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This talk describes a new approach for large-scale computational problems 
which is particularly effective when a relatively simple algorithm is used. We 
demonstrate that it is possible to design and construct, at modest cost, special 
purpose computers for various classes of problems. By exploiting the principles 
of pipelining and parallel processing, and by adapting the hardware design to 
the specific structure of a particular algorithm, one can obtain a device which is 
as fast as or faster than general-purpose commercial supercomputers. The user 
of a such a processor has the double advantage of its speed and of its continuous 
availability for the particular problem for which it was constructed. In statis- 
tical mechanics special purpose computers have been built recently (i) for 
Monte Carlo simulation of the lsing model, and (ii) for the molecular dynamics 
of classical many-particle systems with short-range interactions: The design and 
performance of these machines are discussed and compared to those of commer- 
cial computers. 

KEY WORDS: Special purpose computer; Monte Carlo processor for 
Ising model; molecular dynamics processor. 

1. I N T R O D U C T I O N  

M a n y  b r a n c h e s  of  sc ient i f ic  r e sea r ch  h a v e  b e c o m e  i n s e p a r a b l y  l inked  to the 

d e v e l o p m e n t s  of  c o m p u t e r  t e c h n o l o g y .  Ct) Th i s  is pa r t i cu l a r l y  t rue  in va r i ous  

a reas  of  physics ,  as d e m o n s t r a t e d  in a n u m b e r  of  exce l l en t  r ecen t  r ev i ew  

art icles.  (2> In  m a n y  cases  n u m e r i c a l  resul ts  h a v e  t r iggered  ana ly t i c  Under-  

s t a n d i n g  a n d  h a v e  led to the  f o r m a t i o n  of  n e w  theore t i ca l  concep t s .  F o r  

severa l  d e c a d e s  now,  the  inc rease  of  c o m p u t i n g  p o w e r  has  m o t i v a t e d  

phys ic i s t s  to s tudy  q u e s t i o n s  of  i nc rea s ing  c o m p l e x i t y .  T h e  fac t  r ema ins  
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that the computational power available today in universities and research 
centers is insufficient to attack a number of intriguing but difficult prob- 
lems. It is therefore worthwhile to examine how, for problems requiring 
massive computation, one can exploit all the possibilities offered by mod- 
ern technology. 

Commercially available computing equipment varies considerably in 
architecture. For the purpose of this talk the following distinctions are 
useful. There are first of all the generalpurpose computers. These have been 
designed and constructed to deal with any problem for which a solution 
algorfthm can be formulated. The architecture, and therefore the execution 
rate, of a general purpose computer is not optimized for any particular 
problem. 

Secondly, there are what one could call the operation oriented comput- 
ers. The prime example of these is the array processor, normally used in 
combination with a general purpose computer. Its architecture is such that 
all floating-point operations involving matrix algebra are executed at a very 
high speed. For a given problem one profits from this high execution rate 
only to the extent that one can formulate a solution algorithm in terms of 
matrix and vector operations on long vectors. A small part of an algorithm 
which is not vectorizable m a y  become responsible for almost the entire 
execution time. The two types of architecture can coexist: modern super- 
computers incorporate the key elements of both. 

Computers of a third kind are the subject of this talk. These are the 
special purpose computers, which are problem oriented. Again, a special 
purpose computer will most often be used in combination with a general 
purpose computer. The idea is to take a particular problem as one's starting 
point, to choose the best algorithm for it, and to design and construct a 
hardware device--called a special purpose computer (SPC)--that will carry 
out that algorithm. There is no such thing as a program: it is replaced by 
the wiring of the hardware. If a more flexible use of the device is desired, 
one may include microprogrammable microprocessors in the design. In 
laying out the logical design one is free to arrange fo r parallel processing 
and pipelining wherever the algorithm allows for it, and to make use of any 
tricks which, in the given specific context, will increase the speed of 
execution. 

In what follows we shall see how this basic idea can be fruitfully put 
into practice. We shall describe the design and performance of a number of 
laboratory-built SPCs each constructed to treat one single predefined 
problem of physics. Each of these SPCs is a one-of-a-kind computer: it is 
an example of the highest possible degree of specialization. While in our 
discussion we shall primarily have such highly specialized devices in mind, 
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it is of course possible to think of more "general purpose" SPCs, with a 
range of applications extending to certain classes of problems. One such 
machine is the commercially available ICL DAP, on whose features we 
shall also have the occasion to comment. This talk will not be addressed to 
the computer scientist but to the interested physicist with only a vague 
notion of how a computer works. 

2. SPECIAL PURPOSE COMPUTERS: WHY AND WHEN? 

The advantages of a special purpose computer are twofold. First, by a 
proper design one can obtain at modest cost an SPC which in speed equals 
or surpasses the fastest commercial supercomputers in executing the algo- 
rithm for which it was constructed. Secondly, once constructed, an SPC is 
available full time to its user and that at almost no additional cost. Since 
the design and construction of an SPC requires time and labor, it is natural 
to ask under what circumstances it pays to build an SPC. 

It would seem that the conditions are the following. First, the problem 
must be such that any progress on it would require long or prohibitively 
costly calculations on a general purpose computer with or without an array 
processor at tached to it. Secondly, the algorithm for solving the problem 
must be well established and well understood: once an SPC has been 
constructed, no major hardware modifications can be made. Ideal algo- 
rithms for SPCs are those in which identical sequences of operations are 
repeated time and again. Thirdly, the problem to be treated by the SPC 
must be of some lasting interest, as it may take typically f rom one to two 
years to design and build an SPC. 

Special purpose computers are used in a wide range of situations. A 
field in which they have found a particularly important application is 
experimental high-energy physics: SPCs are essential to the analysis of the 
immense quantities of raw particle collision data. This application has been 
described in some detail by  Nash. (3~ Other examples include a special 
purpose device which multiplies SU(3) matrices, (4~ an SPC for studying the 
SOS model of a crystal surface, (5~ and the world's champion chess com- 
puter Belle. (6) 

At this Statphys Conference we shall be concerned with applications in 
statistical mechanics. In Sections 3 and 4 two specific problems will be 
described for which SPCs are operational. The first one is the Ising model, 
and the second one is the molecular dynamics of a classical many-particle 
system. By its very nature each SPC is unique. We shall nevertheless 
attempt, in Section 5, to discuss certain global features that are common to 
the three laboratory-built SPCs which exist for the above problems. In 
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Sections 6 and 7 we shall discuss how in constructing each of these SPCs 
one  has taken advantage of the specifics of the algorithm which it 
executes. 

3. THE ISlNG MODEL 

3.1. The Problem 

In the Ising model of ferromagnetism (see, e.g., Refs. 7 and 8) a set of 
N "spin" variables si, each taking only the values + 1 or - 1, is located at 
the sites i of a regular spatial lattice. To each configuration {si} a (reduced) 
energy E({si} ) is assigned. Typically E((si) ) is a sum on all single spin 
variables and on all products of two spins at pairs (i, j )  of neighboring 
sites: 

= nE , (1) 
( i,j) i 

In certain cases three- or four-spin couplings, or couplings involving 
further-neighbor pairs, are of interest. A major problem is to calculate 
averages f of certain simple spin functions f((si} ) (for example, f({si}) 
= N -  l~isi) with respect to the Boltzmann weight exp[-E((s i}) ] ,  i.e., 

2(s, l f(  ( si) )exp[ - E( ( si} ) ] 
f =  2("~exp [ - E ( ( s i } )  ] (2) 

One is particularly interested in the behavior o f f (K ,  H )  close to the critical 
point (K, H)  = (K~, 0), where in an infinite system it is singular in K and H. 

A second class of problems concerns the kinetic behavior of a time- 
dependent version of the Ising model, as originally introduced by Glauber 
(see, e.g., Ref. 9). 

3.2. Algorithm 

The standard Monte Carlo method (see, e.g., Ref. 10) for studying the 
Ising model is to generate a stochastic sequence of configurations (s~ 
{sil}, (s2}, . . . , (s/} . . . . .  The tth configuration can be obtained from the 
(t - 1)th by the following simple updating algorithm: 

i. Select a "central" site j on the lattice. 
z z-l for all k =/= j .  ii. Put s k = s k 

iii. Compute the change 2xE} in the reduced energy that would result 
from replacing s]- 1 by - sj- 1 
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iv. Draw a random number r, from a uniform distribution on the 
interval (0, 1); if r, < 1/[1 + exp( -AEj ) ] ,  then put sj = s f - l ;  otherwise put 

5 , = - 5  ,-1" 
Other algorithms are possible, but in practice one uses either this one or 
slightly modified versions of it. 

The algorithm generates states {si} with a probability distribution 
which satisfies a master equation. It is easily shown that for t---) ~ each (si} 
occurs with a frequency proportional to its Boltzmann weight. Hence 
averages like j~ can be approximated by averages on a finite sequence (si t ), 
t = 0, 1 . . . . .  T, provided T is sufficiently large. The convergence will in 
general be as 1/~/T. In the special case that the central sites are selected 
randomly, the sequence (si t) can be identified, furthermore, with the time 
evolution of a kinetic Ising model. (9) 

In an average size Monte Carlo simulation N may be of the order of 
103 and T / N  of the order of 104. To get sufficiently accurate results near 
criticality, where large and slow fluctuations occur, both N and T I N  may 
have to be as much as 100 times larger. 

4. MOLECULAR DYNAMICS OF PARTICLES WITH 
SHORT-RANGE INTERACTIONS 

4.1. Molecular Dynamics 

An old problem in statistical mechanics is how to describe phase 
transitions and other complicated collective phenomena in a many-particle 
system (in continuous space, as opposed to the lattice model of the 
preceding section). Recent surveys relevant to the present discussion are, 
e.g., Refs. 11 and 12. In the simplest case one considers a system of N 
particles numbered i = 1,2 . . . .  , N, of mass m, with spherically symmetric 
pair interactions. Such a model may represent, for example, a collection of 
noble gas atoms. Let the particle positions and velocities be denoted by 
rl, . . . , r N and v l , . . . ,  v~, respectively. The system's total potential energy 
is then 

V(r I . . . .  , ru) = �89 ~ q,(r i -- rj) (3) 
i%j 

The particles obey Newton's equations of motion, 

dri dvi O V 
dt - vi '  m ~ = - 3r--i- (4) 

By integrating these equations one can obtain, in principle, the phase space 
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trajectory {ri(t),vi(t)} of the system for - m  < t < oe. Quantities of physi- 
cal interest are averages of simple functions f ( { r ~ ( t ) , v i ( t ) }  ) along this 
trajectory. 

4.2. Algorithm 

One possible algorithm for integrating the equations of motion is the 
leapfrog scheme. ( ~  A time step At is chosen and one defines 

rim = l i ( l~At ) ,  u  ~- Vi((  n -- 1/2)At) (5) 

where n is an integer. One supplies an initial condition {ri,1, vi,1/z} and at 
the nth step of the algorithm one calculates, in the order indicated, 

a t  deo(Ir,,, - rJ,,I) 
u165 2 dr 2 , i = 1  . . . . .  N (6a) 

j-~i 

r i , n +  1 = ri, n 4- Atvi,n+ 1 / 2 ,  i = 1 . . . . .  N (6b) 

Repetition of this algorithm yields a phase space trajectory of the system 
(we ignore errors due to discretization and  roundoff). The values of 
physical quantities calculated from a finite trajectory will converge to the 
asymptotic values for an infinite trajectory as the number of time steps N ~  
increases. This convergence goes generally as 1 / ~ / N a t ,  which is one reason 
why long simulations are needed. 

An important class of potentials q~(r) are those that tend to zero so 
rapidly with increaseing interparticte distance r that they may effectively be 
set equal to zero beyond a cutoff radius r C. We shall refer to these as 
short-range potentials. For these the sum in (6a) contains only a small 
number of terms and the execution time of this step in the algorithm goes 
down from an amount of order N 2 to an amount of order N. An average 
size simulation with a short-range potential may involve, say, l0 2 to 10 3 

particles, and 10 4 or more time steps. 

5. DESIGN OF SPECIAL PURPOSE COMPUTERS: 
GENERAL CONSIDERATIONS 

In Sections 6 and 7 we shall consider in some detail the design of two 
SPCs for the Ising problem (13'~4~ and of an SPC for molecular dynamics. ( I~ 
Each of these three machines is unique and reflects the highly personal 
approach of its designer. We shall nevertheless try to describe a global 
structural framework within which the individual designs can be explained. 

In all these hardware devices one can distinguish a number of sections 
according to their function. 
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(1) A main memory section contains all the data on which the 
algorithm acts (spin variables, or positions and momenta). 

(2) A second memory section contains auxiliary data, stored in a 
lookup table. For the case of the Ising model, for instance, it may contain 
the transition probabilities, and for the case of molecular dynamics, the 
interaction potential and force. 

(3) In a calculational section the actual arithmetic takes place. It may 
contain adders, multipliers, comparators, and so on. The calculational 
process consists of transferring a small amount of data from the memory to 
the calculational section, updating their values as prescribed by the algo- 
rithm, and writing them back into the memory. Data transport takes time 
and it is important that fast memory access be possible. 

(4) If the algorithm is stochastic, as for Monte Carlo simulations, 
then the SPC has to contain a random number generator. This generator 
must be so designed that it produces (pseudo) random numbers of high 
quality at a very high rate (1 to 100 MHz). In both Ising SPCs discussed 
below use is made of linear feedback shift registers (see, e.g., Ref. 16). 

(5) An SPC is driven by the system clock. The data flow is first of all 
controlled by the predefined and fixed hardware wiring. Nevertheless, 
certain specific control tasks may be handled by a special control section. 
This section may, for example, generate the addresses of memory locations 
and contain counters. If an SPC is to be relatively flexible, there will be 
many control tasks and a good solution is to use microprocessors in the 
control section. 

(6) As the data flow through the SPC goes on, the memory content 
representing the physical system evolves in time. At certain points in this 
flow one can copy ("tap") data that one wants to save for later analysis, 
and store these in the memory of a measurement section of the SPC. 
(Alternatively, they may be sent directly to the host computer; see later.) 
The measurement section may also perform some of the data analysis itself. 
If one arranges for the operations in the measurement section to take place 
parallel with the execution of the main algorithm, the efficiency can be 
increased considerably. 

(7) The hardware sections (l) to (6) constitute the SPC and may 
together be considered by the user as a black box. An input-output 
channel connects the SPC to a host computer. The input consists of the 
initial values for the memory, the values of all adjustable parameters and 
functions in the simulation, the programs for the microprocessors, and 
instructions to carry out specific tasks (such as one iteration of the algo- 
rithm). The output consists of the accumulated measurements, or of the 
entire memory contents. Usually an important part of data analysis re- 
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mains to be done outside the SPC. This may be done in the host computer ,  
or in an array processor attached to it. 

(8) The user communicates interactively with the SPC via a terminal 
of the host computer by means of a software package in a high-level 
programming language. The more flexible the SPC, the larger the software 
package will have to be. In any case it will serve to define the values of 
physical parameters and of the initial configurations, set the length of a 
particular simulation, and direct the output data towards their files. 

Below we shall see how these general remarks apply to three different 
particular cases. 

6. IS lNG P R O C E S S O R S  

Since for the Ising model a binary representation is natural, and since 
this model still presents a great challenge to statistical physicists, it is not 
surprising that Ising special purpose computers have been constructed. In 
1982 two such devices became operational: one in Delft (the Netherlands), 
constructed by Hoogland, (13) and one in Santa Barbara (California), con- 
structed by Pearson, Richardson, and Toussaint. (14) Furthermore, the archi- 
tecture of the ICL DAP (see, e.g., Ref. 17) has recently proven itself 
particularly suited to the study of Ising-type problems. 

The design of the Delft Ising system processor (13~ (DISP) combines 
speed with flexibility. The DISP has a memory of 222 (about four million) 
spin s. These variables, or a fraction of them, can be arranged in either a 
two- or a three-dimensional lattice (d = 2 or 3) with periodic boundary 
conditions. For d = 2, interactions can be defined between each spin s i and 
any group of spins within the 7 • 7 array of which si is the center, and for 
d = 3 between each s~ and any group of spins within the 3 • 3 • 3 array of 
which it is the center. This allows for many-spin interactions and in d = 2 
also for further-neighbor interactions. Moreover, a direct magnetic field 
and certain staggered fields can be applied. 

The memory is randomly addressable, i.e., individual spin variables 
can be independently stored into and retrieved from their location in 
memory. The calculational section performs, in particular, the operations 
(iii) and (iv) of the algorithm already described. Each pass through the 
algorithm involves a central spin and the spins with which it is interacting. 
Getting these variables from memory takes time. In the DISP the values of 
a central spin and its neighbors, say z in number, can be transported 
simultaneously to the calculational section due to a proper organization of 
the memory. This leads to a reduction factor of z with respect to an 
ordinary computer for this part of the execution time. The selection of the 
central sites can be performed either sequentially or at random, the latter 
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option allowing for the simulation of time-dependent phenomena in the 
kinetic Ising model, such as droplet formation and phase separation. At 
present a study of the two-dimensional anisotropic next-nearest-neighbor 
Ising (ANNNI) model (18-2~ is being carried out. 

The D1SP, whose components have cost about $10000, has an up- 
dating rate of 1.5 million spins per second. It is interfaced to an HP 1000 
host computer. 

The Santa Barbara Ising SPC (14~ was designed to carry out the Monte 
Carlo algorithm for the three-dimensional Ising model with nearest- 
neighbor interactions in the fastest possible way. It contains a memory of 
(128) 3 = 221 spins, and the lattice, which may contain this number of sites 
or a fraction of it, is subject to slightly skewed periodic boundary condi- 
tions. This SPC selects the central spins in the Monte Carlo algorithm in a 
fixed sequential order. The designers have cleverly taken advantage of the 
fact that due to this fixed order it is known in advance which data will be 
needed at what time in the calculational section. The memory data (the 
spin values) are arranged in one long shift register and move one step every 
clock cycle in such a way that the data needed by the algorithm present 
themselves automatically before a "window" of the calculational section at 
the right time. This idea circumvents the necessity of address generation 
and substantially reduces the amount of wiring needed. The calculational 
section has, in fact, 16 windows looking out on 16 different locations in the 
lattice, and does the calculation on each of them in a four-stage pipeline. 

The Santa Barbara Ising processor can be used, for example, to study 
the precise location of the critical point, critical exponents, and the validity 
of hyperscaling (21~ in the three-dimensional Ising model. The device, whose 
components cost only about $2000, can update as many as 25 million spins 
per second. It is attached to a VAX-11/780 host computer. 

The commercially available ICL Distributed Array Processor has been 
described in detail elsewhere. (17~ Basically, it contains a square array of 
64 • 64 processing elements, each of which has 4096 bits of memory 
associated with it. The processing elements all execute the same operation 
at the same time. While each individual processing element is relatively 
slow, the machine derives its power from its enormous parallelism. Because 
of this architecture the DAP can deal particularly efficiently with problems 
defined on a lattice. For the Monte Carlo study of the Ising model Wallace 
and collaborators (22~ attain an updating rate of 2.7 to 6 million spins per 
second (depending on the random number generator used). The stronger 
general purpose character of the DAP (as compared to the fully specialized 
processors discussed before) enables one to perform a complete Monte 
Carlo renormalization group (23'24) analysis with the DAP. This analysis 
yields results of a given precision in shorter running times. (22~ Other lattice 
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problems (such as the Ising spin glass(25)), have also been programmed 
successfully on the DAP. The DAP is used in combination with an ICL 
host computer. 

For comparison we finally quote the performance of a commercial 
general purpose computer for the Ising Monte Carlo algorithm. On a CDC 
7600, and using a multispin coding technique, Kalle and Winkelmann (26) 
were able to obtain an updating rate of nearly 1 million spins per second. 
We conclude that for a sufficiently precisely defined problem the SPC 
approach can be a very cost-effective solution. 

7, M O L E C U L A R  D Y N A M I C S  P R O C E S S O R  

Whereas the idea of constructing a special purpose computer is natural 
for the Ising model, which is entirely describable in terms of binary 
variables, there is much less a priori evidence that such an approach pays 
for the molecular dynamics algorithm. Working with real instead of with 
logical variables poses many extra problems. A feasibility study of a 
molecular dynamics SPC, carried out in 1978 by Bakker (27) in Delft, 
concluded nevertheless that it would be worthwhile to undertake such a 
project. In 1982 a molecular dynamics SPC, designed and constructed by 
Bakker, became operational. We shall describe the principal features of this 
machine. A detailed account will be given by Bakker in a future publica- 
tion.(28) 

Since hardware implementation of fixed-point operations is relatively 
straightforward and cheap compared to implementation of floating-point 
operations, the SPC was designed to work with fixed-point numbers. It was 
built to handle two- or three-dimensional problems. The particle memory, 
an important part of the processor, contains for each particle a word of 188 
bits of information. Of these 188 bits, 24 are reserved for each of the 
position coordinates and 32 for each of the velocity coordinates; 16 are 
used for bookkeeping purposes. A maximum of 2 ~4- 1 - 16383 particles 
can be treated. The SPC has been constructed so as to allow for a future 
extension of the memory to 216- 1 = 65535 particles. The particles are 
confined to a square box [ -  1, 1] 2 (or to a cubic box [ -  1, 1] 3) with periodic 
boundary conditions in all directions. The fixed-point arithmetic imposes 
the condition that all particle velocities be scaled so as to keep each of 
their components within the interval [ - 1 ,  1]. A separate memory in the 
SPC contains the interparticle potential q~(r) and the force-over-distance 
r-~d~/dr .  Both are tabulated at 1024 points equidistant in the variable r 2 
on an interval (0, r~). Two extra tables are used for linear interpolation. In 
the hardware design provisions have been made for an extension to systems 



Special Purpose Computers in Physics 997 

of up to four types of particles that can differ in mass and have different 
interparticle potentials. 

The equations of motion are numerically integrated according to the 
leapfrog algorithm described previously. The steps (6a) and (6b) are carried 
out in separate parts of the calculational section. The "position step" (6b) is 
relatively simple as it involves only two (or three) multiplications and 
additions per particle. The "velocity step" (6a) is time consuming, since it 
requires that for each particle we consider all the other ones with which it 
interacts in order to calculate the total force on it. The implementation of 
this procedure in hardware is such that the required operations are done in 
parallel for the three spatial dimensions, as shown schematically in Fig. 1. 

In this figure each triplet of parallel planes represents a triplet of 
simultaneously operating hardware units, performing the same operation 
for the x, the y, and the z component. Only the operations on the x 
components have been indicated explicitly. The two first triplets of planes, 
marked x i and x j ,  respectively, represent fast memories which are filled 
from time to time with the position coordinates ri = (x~, y~, zi)  and rj --- ( x j ,  
y/, zj), respectively, of all particles in two linked-list cells. (I~ The next triplet 
of planes represents the simultaneous calculation of x O. =- xs - x j ,  y 9  =- y~ - 
y j ,  and z 0 ~ zi - z j ,  and the following triplet the simultaneous calculation 
of xo.,2 YO"2 and z~. These are summed to form r 2, which is used to find the 
force-over-distance F ( r r  in the lookup table. The original values of x/y 
etc. are then used (see the arrows in the figure) to calculate the Cartesian 
components Fx(ri j  ) = x iyF(ro . ) / r i / ,  etc., of the force. Finally, the changes 
+ PCx, etc., in the momentum components of the particles i and j are 
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Fig. 1. Schematic representation of the momentum update section in the Delft molecular 
dynamics processor. 
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calculated and added to the original momenta Pi and pj. These, too, are 
stored in fast memories, from where they are transported back from time to 
time to the main memory. 

The hardware section represented in Fig. 1 is divided up into ten pipe 
stages. At each clock cycle (which has a frequency of 4 MHz) a new pair of 
particles enters the pipeline. Both the pipelining and the parallel processing 
constitute important advantages over a sequential computer, and even over 
a vector processor, since the algorithm is not straightforwardly vectorizable. 

For the control of the SPC use is made of four bit-sliced microproces- 
sors. Three of these control, respectively, the communication with the host 
computer, the address generation for the memory, and the linked-list 
procedure. (~1) The last two of these microprocessors are synchronized 
by a fourth one. All these microprocessors are microprogrammable. The 
microprograms can be modified if needed and are downloaded into the 
microprocessors by the host computer. 

The SPC structure offers the important advantage that one can mea- 
sure several physical quantities directly--without any extra cost in comput- 
ing t ime--by tapping data from the pipe stages. These quantities are the 
kinetic and potential energy, and the pair correlation function g(r) for 
0 < r < r c. From these the pressure and the specific heat can be calculated. 
It will also be possible in the near future to calculate, at no extra cost in 
time, for every particle at each time step the vector distances to its six 
nearest neighbors. These determine the hexatic order parameter, which 
plays a key role in the theory of two-dimensional melting. (29) Certain other 
quantities, such as long-range correlations, have to be determined outside 
the SPC. To this end one can transfer, from time to time, a particle 
configuration to the HP 1000 host computer, to which an AP 120B array 
processor is attached. 

For a system of 10000 particles the SPC attains a performance of 
about 1 time step every 2 sec. This is comparable to the speed of a modern 
supercomputer. The cost of the components of the Delft molecular dynam- 
ics SPC has been about $30 000. Presently it is being used for the investiga- 
tion of the melting of monolayers(29-31'12'15) (two-dimensional systems) of 
Lennard-Jones particles. Furthermore, low-density properties of a two- 
dimensional Lennard-Jones system are being investigated by Bruin, Bakker, 
and Bishop. (32~ 

A comparison with the ICL DAP is again of interest. Molecular 
dynamics calculations on this machine have been carried out by Pawley 
and Thomas (33) for the condensed phase of SF 6, where the molecules are 
arranged in a regular lattice structure. The molecular dynamics algorithm 
for this problem is simpler than in Bakker's case because the nearest- 
neighbor relations between molecules remain fixed; on the other hand, the 
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intermolecular interactions (a Lennard-Jones potential between the F 
atoms) is more complicated. For a system of 4096 molecules--each of them 
treated by one processing element of the DAP--Pawley and Thomas obtain 
a rate of 1 time step every 3 sec. 

8. CONCLUSION 

The examples given here convincingly demonstrate the feasibility of 
the SPC approach to certain large-scale computational problems in physics. 
Numerous other problems, including many described by partial differential 
equations, share the characteristics of these examples: local interactions 
and identical operations at different locations in space. In view of the 
technological possibilities one can expect in the near future rapid new 
developments in the field of computational physics. At several institutions 
experimental SPC designs are in various stages of realization. It seems too 
early to indicate the precise direction of these developments. In particular, 
it is not clear at present where the compromise should lie between complete 
specialization (as in the case of the processors of Hoogland, Pearson et al., 
and Bakker), and wider-range applicability (as exemplified by the ICL 
DAP). This question may well not have a unique answer. In any case, the 
investigation of problems in physics with the aid of special purpose comput- 
ers is certain to grow in importance in the years to come. 
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